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Abstract. A generalization of the Hulthén potential is
presented on the basis of an approach that uses the
factorization of a general Hamiltonian by means of a
specific model of operational equations with the struc-
ture ~ f(r) F (d/dr). To achieve this goal, the treatment
of the 74, (r) standard Hulthén potential for bound s
states is carried out by proposing a particular f,(r)
ansatz to identify Wy (r) by means of a particular
Riccati-type relationship. Once the identification has
been achieved, the generalized Hulthén potential is
obtained straightforwardly with the aid of a general
Riccati formula. As expected, the Hamiltonian of the
generalized Hulthén potential is isospectral when com-
pared with the corresponding standard Hamiltonian.
Moreover, according to the Darboux transform there
exists a modified Hulthén potential which is also
isospectral. We show that the latter is just a particular
case of the generalized Hulthén interaction model.

Key words: Isospectral Hamiltonians — Darboux’s
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1 Introduction

The Hulthén potential [1] is a useful interaction model
that has been used extensively in different areas of
physics, including nuclear [2] and atomic physics [3], due
to the fact that it yields closed analytic solutions for the s
waves [4]. In the solution of the case of ¢ # 0, different
approaches have appeared, namely the dynamic-group
[5] and the Padé approximation methods [6]. Moreover,
the algebraic treatment of the Hulthén potential has
been given by de Lange [7] as well as the calculation on
certain expectation values using the hypervirial theorem
[8]. Also, as a consequence of Mielnik’s discovery of a
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family of harmonic oscillator isospectral potentials [9],
other standard potentials have been used in the literature
in order to get the corresponding isospectral Hamilto-
nians [10-12]. In spite of these efforts, as far as we know,
the isospectral Hulthén potential has not been found yet.
However, recently Morales and coworkers [13, 14]
proposed a useful general method to obtain the gener-
alized or isospectral potential that corresponds to a
known standard potential. The generalization of the
Hulthén potential is given in this work by using the
aforementioned procedure. In order to do that, it is
important to keep in mind that when considering bound
s states, the suggested approach is based on the existence
of an algorithm that uses two specific formulae: the first
one is given by the Riccati relationship,

() = B3+ By] — Gy (1

where f3,(r) is an ansatz needed to identify the particular
potential, ¥}, (r), under study, ' indicates a total derivative
and C, is a constant parameter used to clean ¥, (r), and
the second one is
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where
p(r) =

{erb/exp [2/ﬁp<r)dr1 dr}

exp l2/ﬁp(r)dr
(3)

and V(r) is the generalized potential to be determined.

2 The generalized Hulthén potential

With the aim of generalizing the radial Hulthén potential
for bound s states, it is important to point out that
according to the proposal displayed in Sect. 1, S () is
equivalent to the superpotential of Dutt et al. [15]. As a
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consequence, it becomes necessary to use in Eq. (1) the
following ansatz

A
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where 4 and k are arbitrary constants, in order to get
W (A2 +2kA\ Rk
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Thus, by putting Uy = % (4> 4 2k4) in the above
relationship one obtains

Uy B 2mUy N
Vp(r)__eAril_Fgm thz_l -G . (6)

This last potential gives rise to the standard Hulthén
potential [7]

- Cp . (5)
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where H; refers to the standard Hulthén potential,
only on the condition that C, = (h 21412/8m)((2mU0/

thz) 1)?. That is, the standard Hulthén Hamiltonian,
Hy, is factorized according to
d
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= HHS + Cp ) (9)
where
/] d
ai_\/T—m(ﬁp(”):Fa> : (10)

Consequently, in order to obtain the generalized Hul-
thén potential we proceed as follows. According to
Eq. (2) we have

Us +thZ edr
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where, from Eqgs. (3) and (4)
pu(r) = exp[—2kr + 2 In(1 —e™)]

X {y+b/exp[2kr— 2 In(1 —e‘Ar)]dr} . (12)

Besides, it is important to note that

Vi, (r) = —

eAr -1 +2
exp[F2hr£2 In(1 —e)] = (W) ) (13)

for which py(r) is rewritten as

<eAr _ 1>2 A0+ 1)r
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with v = 2mU, /#*A4%. The derivative of py(r) is given by
pu(r) = 2B, (r)pu(r) + b, (15)

which leads to

d( b (gt —k) w2

— = — — 3 (16)
dr \pu(r) pu(r) pu(r)

that should be used in Eq. (11) in order to obtain
explicitly the generalized Hulthén potential.

3 Isospectrality of the generalized Hulthén Hamiltonian

In order to prove the isospectrality of the Hamiltonian
associated with the generalized Hulthén potential, we
can proceed in at least two ways: step by step by
applying the generalized Hulthén potential Hamiltonian
to the corresponding wavefunctions or proving the
isospectrability of the Hamiltonian connecting to any
generalized arbitrary potential. The second option is
more general and is related to the fact that Eq. (2) is
written as

N w o, bR p(r)
Ve(r) = Vo(r) *;ﬁp(rH?p(r)z (17)
in such a way that
0 W d? b p/(r) 8
e= "5, a2t ()— ﬁ() EVe (18)

Besides, it should be noted that Eq. (2) comes from the
solution of the generalized Riccati relationship

) =1 [B0) + B ~ ¢ (19)
which is given by

b
Bo(r) = By (r) + o) (20)

As a consequence, by using the equivalent of Eq. (10),
the generalized operators
+

h b d
= 0 75 2

give rise to the generalized wavefunctions

+ h b !
Pg = dq Yy, = \/T_m (ﬂp(r)lpp + mlpp - lpp) ) (22)

where  are the particular or specific eigenfunctions
of H,. ]Phese generalized operators factorize both the
partlcular H, and the generalized H, Hamiltonians by
means of

a

a;ag =H,+C (23)
and
a;'ag_ =H,+C . (24)

Thus, by applying the generalized Hamiltonian to the
generalized wavefunctions one finds
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As can be appreciated, this last relationship contains
the first-, second- and third-order derivatives of the
wavefunction as well as first- and second-order deriva-
tives of the ansatz fi,(r) and p(r). For that, in order to
simplify Eq. (25) we begin by using the Schroedinger
equation
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in order to obtain its derivative

h2

ﬁwg/ = V(W + Vo ()i, — Ep¥y, (27)
With this last identity, Eq. (25) is simplified as
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Similarly, in Eq. (28) we use, from Eq. (1), the derivative
of the Riccati relationship

) = o 28,y + By (29)

in order to get
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At this point, the use of Eq. (15) and its derivative
p"(r) = 2B, (r)p'(r) + 2B, (r)p(r) (31)
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in Eq. (30) leads to

h b
Hypy = o {(5p(”) + p<r)>Ep‘//p - Ep‘#;g] : (32)
Factorizing the energy in this last relationship, the term
within {..} is identified straightforwardly with the
product of (%/v/2m) and ¢,, given in Eq. (22), for which

Hg(Pg = Hg(agl//p> = Ep(Pg ) (33)

proving that the generalized Hamiltonian, H,, is also
isospectral independent of the potential under study.

4 The Darboux’s potential for the Hulthén model

According to Korolev [16], the Darboux transform is
closely related to the notion of an isospectral transform
of the Schroedinger operator. This happens because the
Darboux transform [17] establishes that if a solution
Wy (x) of the Schroedinger equation for a given operator
Hj is known, then this transform provides a family of
operators H whose spectrum coincides with that of Hj.
In the case of this work, according to the procedure of
Morales and coworkers [13, 14], the factorization
_ W»d R, ,
ata = =T [B) = By ) (34)

gives rise, in general, to the existence of a modified
Hamiltonian, H,(r), given by
nd
2mdy?
where ¥, (r) is the corresponding modified potential

Hn(r)=a"a” — Cy = + V() (35)

Folr) = Folr) — = i)

This modified potential is exactly the same, as the one
obtained when using the Darboux transformation [17]
and we named it the Darboux potential. That is, for the
Hulthén model its Darboux potential is given by

Us N PA> et
edr — 1 m o (edr — 1)
in such a way that the Hpy(r) Hulthén modified
Hamiltonian, or Darboux Hamiltonian for the Hulthén

model, is related to the H,(r) Hulthén particular
Hamiltonian by means of

Hy(r)a~ =a Hy(r) and Hy(r)a®™ =a Hy(r) , (37)

Vi () = — (36)

which leads to
Hy(r)a™y = Epa+lﬂ , (38)

indicating, as expected, the isospectrality of Hp, (7).
Finally, we conclude by remarking that the procedure
used to generalize a standard potential is a straightfor-
ward method, which is far simpler than equivalent
approaches used to find new families of isospectral
known potentials [18]. Moreover, by finding the modi-
fied Hulthén potential we have implicity shown that the
so-called new families of isospectral known potentials
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are only a particular case of modified potentials because
they match with the corresponding Darboux potentials.
Therefore, the generalized potentials studied here are
totally different from the Darboux potentials, although
these last potentials can be considered as particular cases
of partner potentials.

Acknowledgements. This work was supported by CONACYT-
Mexico under Scientific Project No. 32762E.

References

1. Hulthén L (1942) Ark Mat Astron Fys A 28: 5
2. Hall RL (1985) Phys Rev A 32: 14
3. Myhrman U (1983) J Phys A 16: 263

. Flugge S (1974) Practical quantum mechanics. Springer, Berlin

Heidelberg New York

. Matthys P, De Meyer H (1988) Phys Rev A 38: 1168

. Lai CS, Lin WC (1980) Phys Lett A 78: 355

. de Lange OL (1991) Am J Phys 59: 151

. de Lange OL, Raab RE (1991) Operator methods in quantum

mechanics. Clarendon Press, Oxford

. Mielnik B (1984) J Math Phys 25: 3387

. Fernandez DJ (1984) Lett Math Phys 8: 337

. Zhu D (1987) J Phys A Math Gen 20: 4331

. Drigo Filho E (1988) J Phys A Math Gen 21: L1025

. Morales J, Pefa JJ, Ovando G, Gaftoi V (1999) Int J Quantum

Chem 71: 465

. Morales J, Pefia JJ (1999) J Math Phys 40: 5555

. Dutt R, Share A, Sukhatme UP (1988) Am J Phys 56: 163

. Korolev VG (1998) J Phys A Math Gen 31: 9297

. Matveev VB, Salle MA (1991) Darboux transformations and

solitons. Springer, Berlin Heidelberg New York

. Rosas Ortiz JO (1998) J Phys A Math Gen 31: L507



